USN

Sixth Semester B.E. Degree Examination, June 2012

Antenna and Propagation

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. State and explain: Aperature efficiency, effective height and bandwidth of an antenna.

(09 Marks)

- b. Show that the directivity of an antenna is the ratio of the area of a sphere to the beam area. (05 Marks)
- c. Derive Friis transmission formula.

(06 Marks)

- 2 a. The radial component of the radiated power density of an infinitesimal linear dipole of length $l << \lambda$ is given by $\frac{a_r A_m Sin^2 \theta}{r^2}$ where $A_m = peak$ value of the power density,
 - a_r = radial unit vector. Find the directivity of the antenna.

(06 Marks)

- b. Prove that directivity for a source with unidirectional pattern of Um $Cos^n\theta$ (where n is any number) can be expressed as D = 2(n + 1). (06 Marks)
- c. Obtain the field pattern for two point sources situated symmetrically with respect to the origin. Two sources are feed with equal amplitude and equal phase signals. Assume: Distance between two sources = $\lambda/2$. (08 Marks)
- 3 a. Derive an expression for electric field component of a linear antenna of length $\lambda/2$ long.
 - b. Derive the expression for radiation resistance of a short dipole with uniform current.

(08 Marks)

- 4 Write notes on:
 - a. Pattern multiplication.

(07 Marks)

b. Power distribution in broad side array.

(06 Marks)

c. Radiation pattern.

(07 Marks)

PART - B

- 5 a. Derive the expression for E field component of a small circular loop antenna of radius 'a', carrying current I. (12 Marks)
 - b. State and illustrate Babinets principle.

(08 Marks)

- **6** Write short notes on:
 - a. Lens antenna.

(07 Marks)

b. Log-periodic antenna.

(07 Marks)

c. Antennas for ground penetrating radar.

- (06 Marks)
- 7 a. What is meant by diffraction of radio waves? Define knife edge diffraction gain. (07 Marks)
 - b. Describe ground wave propagation.

(07 Marks)

- c. Obtain the expression for line of sight distance between the transmit and receiver antennas.

 (06 Marks)
- **8** a. Discuss the reflection mechanism where by electromagnetic waves are bent back by a layer of the ionosphere. Include in your discussing a description of the virtual height of a layer.
 - (12 Marks)
 - b. Describe briefly the strata of the ionosphere and their effects on sky wave propagation.